Documentation

Mathlib.Probability.Process.Filtration

Filtrations #

This file defines filtrations of a measurable space and σ-finite filtrations.

Main definitions #

Main results #

Tags #

filtration, stochastic process

structure MeasureTheory.Filtration {Ω : Type u_1} (ι : Type u_2) [Preorder ι] (m : MeasurableSpace Ω) :
Type (max u_1 u_2)

A Filtration on a measurable space Ω with σ-algebra m is a monotone sequence of sub-σ-algebras of m.

Instances For
    instance MeasureTheory.instCoeFunFiltrationForallMeasurableSpace {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
    CoeFun (Filtration ι m) fun (x : Filtration ι m) => ιMeasurableSpace Ω
    Equations
      theorem MeasureTheory.Filtration.mono {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {i j : ι} (f : Filtration ι m) (hij : i j) :
      f i f j
      theorem MeasureTheory.Filtration.le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : Filtration ι m) (i : ι) :
      f i m
      theorem MeasureTheory.Filtration.ext {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} (h : f = g) :
      f = g
      theorem MeasureTheory.Filtration.ext_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
      f = g f = g
      def MeasureTheory.Filtration.const {Ω : Type u_1} (ι : Type u_3) {m : MeasurableSpace Ω} [Preorder ι] (m' : MeasurableSpace Ω) (hm' : m' m) :

      The constant filtration which is equal to m for all i : ι.

      Equations
        Instances For
          @[simp]
          theorem MeasureTheory.Filtration.const_apply {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {m' : MeasurableSpace Ω} {hm' : m' m} (i : ι) :
          (const ι m' hm') i = m'
          instance MeasureTheory.Filtration.instInhabited {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
          Equations
            instance MeasureTheory.Filtration.instLE {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
            LE (Filtration ι m)
            Equations
              instance MeasureTheory.Filtration.instBot {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
              Equations
                instance MeasureTheory.Filtration.instTop {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
                Equations
                  instance MeasureTheory.Filtration.instMax {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
                  Equations
                    theorem MeasureTheory.Filtration.coeFn_sup {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
                    (fg) = fg
                    instance MeasureTheory.Filtration.instMin {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
                    Equations
                      theorem MeasureTheory.Filtration.coeFn_inf {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
                      (fg) = fg
                      instance MeasureTheory.Filtration.instSupSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
                      Equations
                        theorem MeasureTheory.Filtration.sSup_def {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (s : Set (Filtration ι m)) (i : ι) :
                        (sSup s) i = sSup ((fun (f : Filtration ι m) => f i) '' s)
                        noncomputable instance MeasureTheory.Filtration.instInfSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
                        Equations
                          theorem MeasureTheory.Filtration.sInf_def {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (s : Set (Filtration ι m)) (i : ι) :
                          (sInf s) i = if s.Nonempty then sInf ((fun (f : Filtration ι m) => f i) '' s) else m
                          noncomputable instance MeasureTheory.Filtration.instCompleteLattice {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
                          Equations
                            theorem MeasureTheory.measurableSet_of_filtration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {s : Set Ω} {i : ι} (hs : MeasurableSet s) :
                            class MeasureTheory.SigmaFiniteFiltration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) :

                            A measure is σ-finite with respect to filtration if it is σ-finite with respect to all the sub-σ-algebra of the filtration.

                            Instances
                              instance MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) [hf : SigmaFiniteFiltration μ f] (i : ι) :
                              SigmaFinite (μ.trim )
                              @[instance 100]
                              theorem MeasureTheory.Integrable.uniformIntegrable_condExp_filtration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {μ : Measure Ω} [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω} (hg : Integrable g μ) :
                              UniformIntegrable (fun (i : ι) => μ[g|f i]) 1 μ

                              Given an integrable function g, the conditional expectations of g with respect to a filtration is uniformly integrable.

                              @[deprecated MeasureTheory.Integrable.uniformIntegrable_condExp_filtration (since := "2025-01-21")]
                              theorem MeasureTheory.Integrable.uniformIntegrable_condexp_filtration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {μ : Measure Ω} [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω} (hg : Integrable g μ) :
                              UniformIntegrable (fun (i : ι) => μ[g|f i]) 1 μ

                              Alias of MeasureTheory.Integrable.uniformIntegrable_condExp_filtration.


                              Given an integrable function g, the conditional expectations of g with respect to a filtration is uniformly integrable.

                              theorem MeasureTheory.Filtration.condExp_condExp {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : ΩE) {μ : Measure Ω} ( : Filtration ι m) {i j : ι} (hij : i j) [SigmaFinite (μ.trim )] :
                              μ[μ[f| j]| i] =ᶠ[ae μ] μ[f| i]
                              def MeasureTheory.filtrationOfSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) :

                              Given a sequence of measurable sets (sₙ), filtrationOfSet is the smallest filtration such that sₙ is measurable with respect to the n-th sub-σ-algebra in filtrationOfSet.

                              Equations
                                Instances For
                                  theorem MeasureTheory.measurableSet_filtrationOfSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) (i : ι) {j : ι} (hj : j i) :
                                  theorem MeasureTheory.measurableSet_filtrationOfSet' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (n : ι), MeasurableSet (s n)) (i : ι) :
                                  def MeasureTheory.Filtration.natural {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [TopologicalSpace β] [TopologicalSpace.MetrizableSpace β] [ : MeasurableSpace β] [BorelSpace β] [Preorder ι] (u : ιΩβ) (hum : ∀ (i : ι), StronglyMeasurable (u i)) :

                                  Given a sequence of functions, the natural filtration is the smallest sequence of σ-algebras such that that sequence of functions is measurable with respect to the filtration.

                                  Equations
                                    Instances For
                                      theorem MeasureTheory.Filtration.filtrationOfSet_eq_natural {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [TopologicalSpace β] [TopologicalSpace.MetrizableSpace β] [ : MeasurableSpace β] [BorelSpace β] [Preorder ι] [MulZeroOneClass β] [Nontrivial β] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) :
                                      filtrationOfSet hsm = natural (fun (i : ι) => (s i).indicator fun (x : Ω) => 1)
                                      noncomputable def MeasureTheory.Filtration.limitProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] (f : ιΩE) ( : Filtration ι m) (μ : Measure Ω) :
                                      ΩE

                                      Given a process f and a filtration , if f converges to some g almost everywhere and g is ⨆ n, ℱ n-measurable, then limitProcess f ℱ μ chooses said g, else it returns 0.

                                      This definition is used to phrase the a.e. martingale convergence theorem Submartingale.ae_tendsto_limitProcess where an L¹-bounded submartingale f adapted to converges to limitProcess f ℱ μ μ-almost everywhere.

                                      Equations
                                        Instances For
                                          theorem MeasureTheory.Filtration.stronglyMeasurable_limitProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] { : Filtration ι m} {f : ιΩE} {μ : Measure Ω} :
                                          theorem MeasureTheory.Filtration.stronglyMeasurable_limit_process' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] { : Filtration ι m} {f : ιΩE} {μ : Measure Ω} :
                                          theorem MeasureTheory.Filtration.memLp_limitProcess_of_eLpNorm_bdd {Ω : Type u_1} {m : MeasurableSpace Ω} {μ : Measure Ω} {R : NNReal} {p : ENNReal} {F : Type u_5} [NormedAddCommGroup F] { : Filtration m} {f : ΩF} (hfm : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hbdd : ∀ (n : ), eLpNorm (f n) p μ R) :
                                          MemLp (limitProcess f μ) p μ
                                          @[deprecated MeasureTheory.Filtration.memLp_limitProcess_of_eLpNorm_bdd (since := "2025-02-21")]
                                          theorem MeasureTheory.Filtration.memℒp_limitProcess_of_eLpNorm_bdd {Ω : Type u_1} {m : MeasurableSpace Ω} {μ : Measure Ω} {R : NNReal} {p : ENNReal} {F : Type u_5} [NormedAddCommGroup F] { : Filtration m} {f : ΩF} (hfm : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hbdd : ∀ (n : ), eLpNorm (f n) p μ R) :
                                          MemLp (limitProcess f μ) p μ

                                          Alias of MeasureTheory.Filtration.memLp_limitProcess_of_eLpNorm_bdd.

                                          Filtration of the first events #

                                          def MeasureTheory.Filtration.piLE {ι : Type u_3} [Preorder ι] {X : ιType u_4} [(i : ι) → MeasurableSpace (X i)] :

                                          The canonical filtration on the product space Π i, X i, where piLE i consists of measurable sets depending only on coordinates ≤ i.

                                          Equations
                                            Instances For
                                              def MeasureTheory.Filtration.piFinset {ι : Type u_4} {X : ιType u_5} [(i : ι) → MeasurableSpace (X i)] :

                                              The filtration of events which only depends on finitely many coordinates on the product space Π i, X i, piFinset s consists of measurable sets depending only on coordinates in s, where s : Finset ι.

                                              Equations
                                                Instances For

                                                  The exterior σ-algebras of finite sets of α form a cofiltration indexed by Finset α.

                                                  Equations
                                                    Instances For