Documentation

Mathlib.Algebra.Homology.Embedding.HomEquiv

Relations between extend and restriction #

Given an embedding e : Embedding c c' of complex shapes satisfying e.IsRelIff, we obtain a bijection e.homEquiv between the type of morphisms K ⟶ L.extend e (with K : HomologicalComplex C c' and L : HomologicalComplex C c) and the subtype of morphisms φ : K.restriction e ⟶ L which satisfy a certain condition e.HasLift φ.

TODO #

The condition on a morphism K.restriction e ⟶ L which allows to extend it as a morphism K ⟶ L.extend e, see Embedding.homEquiv.

Equations
    Instances For
      noncomputable def ComplexShape.Embedding.liftExtend.f {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {e : c.Embedding c'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K : HomologicalComplex C c'} {L : HomologicalComplex C c} [e.IsRelIff] (φ : K.restriction e L) (i' : ι') :
      K.X i' (L.extend e).X i'

      Auxiliary definition for liftExtend.

      Equations
        Instances For

          The morphism K ⟶ L.extend e given by a morphism K.restriction e ⟶ L which satisfy e.HasLift φ.

          Equations
            Instances For
              noncomputable def ComplexShape.Embedding.liftExtendfArrowIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K : HomologicalComplex C c'} {L : HomologicalComplex C c} [e.IsRelIff] (φ : K.restriction e L) ( : e.HasLift φ) {i' : ι'} {i : ι} (hi : e.f i = i') :

              Given φ : K.restriction e ⟶ L such that hφ : e.HasLift φ, this is the isomorphisms in the category of arrows between the maps (e.liftExtend φ hφ).f i' and φ.f i when e.f i = i'.

              Equations
                Instances For
                  theorem ComplexShape.Embedding.mono_liftExtend_f_iff {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K : HomologicalComplex C c'} {L : HomologicalComplex C c} [e.IsRelIff] (φ : K.restriction e L) ( : e.HasLift φ) {i' : ι'} {i : ι} (hi : e.f i = i') :
                  theorem ComplexShape.Embedding.epi_liftExtend_f_iff {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K : HomologicalComplex C c'} {L : HomologicalComplex C c} [e.IsRelIff] (φ : K.restriction e L) ( : e.HasLift φ) {i' : ι'} {i : ι} (hi : e.f i = i') :
                  noncomputable def ComplexShape.Embedding.homRestrict.f {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {e : c.Embedding c'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] {K : HomologicalComplex C c'} {L : HomologicalComplex C c} [e.IsRelIff] (ψ : K L.extend e) (i : ι) :
                  (K.restriction e).X i L.X i

                  Auxiliary definition for Embedding.homRestrict.

                  Equations
                    Instances For

                      The morphism K.restriction e ⟶ L induced by a morphism K ⟶ L.extend e.

                      Equations
                        Instances For

                          The bijection between K ⟶ L.extend e and the subtype of K.restriction e ⟶ L consisting of morphisms φ such that e.HasLift φ.

                          Equations
                            Instances For