Documentation

Mathlib.Order.Category.FinBoolAlg

The category of finite boolean algebras #

This file defines FinBoolAlg, the category of finite boolean algebras.

TODO #

Birkhoff's representation for finite Boolean algebras.

FintypeCat_to_FinBoolAlg_op.left_op ⋙ FinBoolAlg.dual ≅
FintypeCat_to_FinBoolAlg_op.left_op

FinBoolAlg is essentially small.

structure FinBoolAlgextends BoolAlg :
Type (u_1 + 1)

The category of finite boolean algebras with bounded lattice morphisms.

Instances For
    @[reducible, inline]
    abbrev FinBoolAlg.of (α : Type u_1) [BooleanAlgebra α] [Fintype α] :

    Construct a bundled FinBoolAlg from BooleanAlgebra + Fintype.

    Equations
      Instances For
        theorem FinBoolAlg.coe_of (α : Type u_1) [BooleanAlgebra α] [Fintype α] :
        (of α).toBoolAlg = α
        def FinBoolAlg.Iso.mk {α β : FinBoolAlg} (e : α.toBoolAlg ≃o β.toBoolAlg) :
        α β

        Constructs an equivalence between finite Boolean algebras from an order isomorphism between them.

        Equations
          Instances For
            @[simp]
            theorem FinBoolAlg.Iso.mk_inv {α β : FinBoolAlg} (e : α.toBoolAlg ≃o β.toBoolAlg) :
            (mk e).inv = BoolAlg.ofHom (have __src := { toFun := e.symm, map_sup' := , map_inf' := }; { toFun := e.symm, map_sup' := , map_inf' := , map_top' := , map_bot' := })
            @[simp]
            theorem FinBoolAlg.Iso.mk_hom {α β : FinBoolAlg} (e : α.toBoolAlg ≃o β.toBoolAlg) :
            (mk e).hom = BoolAlg.ofHom (have __src := { toFun := e, map_sup' := , map_inf' := }; { toFun := e, map_sup' := , map_inf' := , map_top' := , map_bot' := })

            The equivalence between FinBoolAlg and itself induced by OrderDual both ways.

            Equations
              Instances For

                The powerset functor. Set as a functor.

                Equations
                  Instances For
                    @[simp]
                    theorem fintypeToFinBoolAlgOp_map {X Y : FintypeCat} (f : X Y) :
                    fintypeToFinBoolAlgOp.map f = (BoolAlg.ofHom (have __src := { toFun := (CompleteLatticeHom.setPreimage f), map_sup' := , map_inf' := }; { toFun := (CompleteLatticeHom.setPreimage f), map_sup' := , map_inf' := , map_top' := , map_bot' := })).op