The category of finite boolean algebras #
This file defines FinBoolAlg
, the category of finite boolean algebras.
TODO #
Birkhoff's representation for finite Boolean algebras.
FintypeCat_to_FinBoolAlg_op.left_op ⋙ FinBoolAlg.dual ≅
FintypeCat_to_FinBoolAlg_op.left_op
FinBoolAlg
is essentially small.
@[reducible, inline]
Construct a bundled FinBoolAlg
from BooleanAlgebra
+ Fintype
.
Equations
Instances For
instance
FinBoolAlg.concreteCategory :
CategoryTheory.ConcreteCategory FinBoolAlg fun (x1 x2 : FinBoolAlg) => BoundedLatticeHom ↑x1.toBoolAlg ↑x2.toBoolAlg
Equations
Equations
@[simp]
@[simp]
@[simp]
Constructs an equivalence between finite Boolean algebras from an order isomorphism between them.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
fintypeToFinBoolAlgOp_map
{X Y : FintypeCat}
(f : X ⟶ Y)
:
fintypeToFinBoolAlgOp.map f = (BoolAlg.ofHom
(have __src := { toFun := ⇑(CompleteLatticeHom.setPreimage f), map_sup' := ⋯, map_inf' := ⋯ };
{ toFun := ⇑(CompleteLatticeHom.setPreimage f), map_sup' := ⋯, map_inf' := ⋯, map_top' := ⋯, map_bot' := ⋯ })).op